Atelier pour Arrosage automatique et autonome

De HATLAB

Une Technique de avatarSylvain dans les catégories Science & Biologie, Sport & Extérieur, Alimentation & Agriculture, Projet de Groupe. Dernière modification le 18/10/2023 par Sgiraud.

Atelier pour Arrosage automatique et autonome mur-vegetal.png

Introduction

Il s'agit de faire un système d'arrosage automatique pour des membres du CLC. Un atelier sera proposé au printemps et les participants pourront partir chez eux avec un petit système qu'il auront fabriqué, pour un coût modéré. 4 exemplaires seront réservés pour le mur végétal du CLC.

Cas d'usage: Le CLC apprend à des jeunes à planter puis à récolter des graines. Problème: lors d'une absence de chez soi, au retour, tout est sec ! De plus il y a un "mur végétal" devant le CLC. De même, au retour, tout est cramé.

Liste des matériaux

Proposition:

  • Il y a un réservoir récupérateur d'eau à proximité
  • Ajouter une petite pompe, un programmateur, éventuellement des capteurs d'humidité
  • des drains (pas de gros débit)
  • 1 Panneau Solaire
  • ...etc...

Liste des outils

Etape n°1 - 1ers choix

Choix notés ce soir:

  • quel type de pompe ? (s'assurer qu'elle peut aller jusqu'au bout du mur)
  • batterie rechargeables ou pas ?
  • arrosage sur ou sous terre
  • circuit électronique simple, ou nano, ou nodemcu (rester dans du "standard")
  • quel panneau solaire? Doit-il pouvoir alimenter le moteur directement, ou faut il passer par des batteries pour avoir assez de puissance?

Il y a même des tutos sur des circuits de recharge utilisant un simple TP4056 connecté au panneau et à la batterie! Est-ce sérieux?

Ci-joint un panneau que j'ai, de 12V , 3,5W, 290mA.

Etape n°2 - Cas du mur Végétal

Le mur a les caractéristiques:

  • gros réservoir de 1000L
  • plusieurs palettes à étages
  • étalées sur 10 mètres

Il faut donc:

  • de la puissance au niveau de la pompe (pompe 12V essuie-glace?),
  • bien distribuer le débit partout,
  • plusieurs mesures d'humidité,
  • le surplus d'eau peut s'écouler entre les étages d'une même palette

Etape n°3 - Cas du kit individuel

Le système avec 2 bouteilles tête-bêche et récupération de l'eau a plusieurs avantages.

  • la pompe est de puissance réduite, remonte l'eau de la bouteille du bas vers cette du haut, en circuit fermé.
  • 1 seule mesure d'humidité

Ce cas ne fait pas partie des objectifs actuels à l'étude. Il est conservé pour un besoin futur.

Etape n°4 - Etude de l'alimentation

Si on privilégie un panneau solaire. Il existe 2 cas:

  • Alimentation uniquement lors de l'ensoleillement. Lorsque l'ensoleillement est faible le système est arrêté. Avantages: pas de batterie ni de recharge, mesures ponctuelles (avec des sondes à fil il faut éviter de faire circuler le courant en permanence car cela oxyde la matériau. Mais l'alimentation solaire doit être suffisante pour actionner la pompe.
  • Alimentation permanente. Nécessite un batterie, d'un type non dangereux et un circuit de contrôle.

Conso estimée:

  • Système simple pur électronique : 130-220mA
  • Microcontroller ESP en mode normal : 70mA
  • Microcontroller ESP en mode "deep sleep" : conso 4mA.
  • Moteur de la pompe : à voir selon le modèle, pompe essuie-glace 12V, ou pompe plus réduite par exemple 6V.

Alimentation Microcontroller:

  • ESP NodeMCU: Maxi 12V, Régulation intégrée par AMS1117 3.3V
  • Nano : Régulation 5V.
  • D1 Mini : Regulation intégrée 6 V Maxi

Etape n°5 - Démo d'un test de lecture d'humidité

La sonde comprend 2 fils de cuivre. Le réglage du seuil se fait par écran tactile, juste pour le test. On note que le moteur 12V consomme déjà + de 400mA une fois lancé.

L'alimentation du moteur s'effectue au travers d'un transistor Darlington : la vitesse est réglable en jouant sur la modulation de largeur d'impulsion MLI (ou PWM en anglais) de la sortie du µc (esp32)

Etape n°6 - Construction d’un module autonome d’alimentation en eau

Une colonne intermédiaire embarquant : • un réservoir de 5L d’eau • 2 capteurs de niveau d’eau, • une electrovanne • un microcontroleur (pilotant l’electrovanne en tenant compte de l’heure et de l’humidité de la terre par une sonde)

Nota : une bouteille plastique cristalline de 5L coûte 0,87€ à Auchan drive le 2021-12-04)

Etape n°7 - Exemple de mur végétal

Ci-contre une photo exemple de réalisation de mur végétal avec alimentation en eau par système de goutte à goutte.

Etape n°8 - Exemple de suspension

Avec du fil à rôti, Faire autant de suspentes que nécessaire en doublant le fil. Un minimum de 4 est fortement recommandé. Pour une bouteille de 8L, chaque brin supportera donc 1kg.

Etape n°9 - 2 exemples de schéma

Proposition de solution employant une seule pompe et alimentant 3 circuits indépendants avec des niveaux de seuils d'humidités différents.

Une première évaluation donne une estimation de coût de 60€

* Pompe  3,98 €  1
* Capteur humidité capacitif	 1,04 € 	3
* Écran tactile		3,2"	 9,89 € 	1
* Électrovanne	1 voie	 1,85 € 	3
* Puissance pompe	TIP120	 1,00 € 	1
* Puissance électrovannes	BC540,. 2 
* N2222	 0,25 € 	3
* Diode de roue libre	1N4001	 0,10 € 	3
* Résistances, capa,..		 1,00 € 	1
* Connectiques		 0,20 € 	10
* fil électrique		 1,50 € 	1
* Tuyaux eau		 3,50 € 	1
* Batterie	LIPO- 1100mAh	 7,46 € 	1
* Panneau solaire		 7,73 € 	1
* µC	Esp32	 2,50 € 	1
* Circuit de charge		 1,32 € 	1
* Pcb spécifique		 5,00 € 	1

Etape n°10 - Evaluation d'une pompe de lave-glace

Évaluation d'une pompe de lave-glace

Alimentation en 12V - courant mesuré : 1,5 à 2A --> soit une puissance estimée ~ 24W

A vide, le débit est de plusieurs litres à la minute (estimé inférieur à 10s pour vider une bouteille de 1,5l). La pompe permet d'expulser un jet d'eau à un mètre.

Des essais complémentaires doivent être menés pour évaluer la hauteur maxi de refoulement qui semble être de plusieurs mètres.

=> Semble supérieur au besoin et trop consommateur

Etape n°11 - Nouveau test avec une petite pompe 12V

La pompe est connectée à un bac d'eau situé 50 cm en dessous de lui. La sortie est connectée à un tube de 20 METRES de long qui sort 1 petit mètre au dessus.

Resultats:

  • La pompe s'amorce toute seule.
  • L'eau sort bien au bout des 20 mètres, avec un peu de pression.
  • Le moteur tire environ 300mA. Légères variations selon la pression appliquée en sortie. Il chauffe un peu.

Etape n°12 - Tentative de piece 3D pour distribuer l'eau

Cette pièce permettrait de régler le débit sur une branche par rapport aux autres. Le réglage est fixe, ce qui est moins bien qu'un moteur ou une valve électrique.

Les raccords 4mm imprimés en PLA sont fonctionnels, mais nécessitent de la reprise après l'impression. A suivre: raccords en T, et buses.

Etape n°13 - Impression 3D de connecteurs pour l’electrovanne et pour la bouteille

Pour pouvoir raccorder l’electrovanne à la bouteille d’eau d’un côté et au système de circuit d’eau avec goutte à goutte de l’autre côté, il est nécessaire d’avoir un connecteur pour l’un comme pour l’autre.

Etape n°14 - Assemblage de la colonne d’eau à partir de 2 palettes

Etape n°15 - Version circuit sur carte

Pour récap on a:

  • la sortie vers le BC517 puis electro-vanne ou moteur
  • l'entrée depuis la sonde
  • l'alim par usb 5V , en option alim des périph séparée
  • mode sleep activable

Pour plus tard il y a la place pour:

  • l'alimentation protégée pile + panneau solaire
  • le multiplexeur pour modèle à plusieurs sondes
  • la sortie vers un registre à décalage pour modèle à plusieurs électrovannes ou moteurs (ouhla ! reste-t-il assez de D out ?)

ALIMENTATION: Voir le 2nd schéma.

  • Supprimer le FIL OPTIONNEL
  • L'ESP sera alimenté en sortie du Buck connecté au 3.3V (donc après le régulateur)
  • Les périphériques seront alimentés directement en sortie du TP4056

Etape n°16 - Conception d'un boitier

La version qui n'est pas dans le bouchon a elle aussi besoin d'un boîtier. La carte fait 5.5 cm x 10.5 cm, et 2.5 cm de hauteur. L'espace libre sera occupé par les fonctions de recharge. Voir les explications à l'étape précédente.

Il faudra aussi mettre la pile 18650 quelque part. Elle mesure 650mm x 18mm. D'où son nom !

Contraintes, garder l'accès:

  • Au bouton
  • Au 2 connecteurs (en haut) electrovanne/moteur + sonde
  • A l'alimentation micro USB et le connecteur externe (en bas)
  • Plus tard à une connexion à la batterie et panneau solaire
  • Il faut pouvoir l'ouvrir pour accéder au strap du mode sleep.

Le boîtier peut être en bois, imprimé en 3D (un peu gros) ou autre. Il devra être étanchéifié ensuite.

Qui est prêt à relever le défi ?

Etape n°17 - Support de sonde

Support imprimé en 1 fois et réglable en hauteur. Le réglage est prévu pour le remplissage du plateau en ttoute première phase des semis.

Etape n°18 - Test en boucle

Suite à quelques surprises avec les pompes qui s'arrêtent, un test plus long est installé:

  • La pompe rempli la bouteille jusqu'à à un niveau détecté par la sonde d'humidité (réglée à 20%).
  • Un trou dans la bouteille la vide doucement.
  • Le test est lancé durant plus de 2 heures sans problème.

Le test révèle un problème potentiel sur les pompes. Après utilisation, si elle restent inactives longuement, elles se bloquent. Il faut les décoincer "à la main". Une solution est de souffler dans la l'orifice d'entrée, jusqu'à entendre la turbine tourner. Pour prévenir ce problème il faudra lancer régulièrement la pompe. A tester.

Etape n°19 - Test réel avec semis

Le système est mis en place avec un plateau de semis (du basilic). La pompe arrose le plateau dès que le niveau est trop bas.

Ca tourne...

Etape n°20 - Mode d'emploi

Voici le mode d'emploi du système avec alimentation interne et recharge solaire:

Installation:

  • Brancher le fil du capteur et du moteur
  • Plonger la partie turbine du moteur dans le réservoir d'eau. La partie opposée d'où sort le fil électrique doit rester hors de l'eau. Le réservoir d'eau doit se situer plus bas que le plateau pour éviter tout effet siphon.
  • Placer et régler le capteur au bord du plateau ou dans la terre
  • Placer le tuyau sur la terre ou au-dessus de l'eau (ne pas plonger l'extrémité dans l'eau pour éviter un effet siphon)
  • Allumer l'appareil (bouton ON/OFF).
  • Positionner le capteur solaire vers le sud, bien exposé, sans aucune ombre dessus, et éviter de le mettre derrière une vitre.
  • S'assurer que le réservoir contient suffisamment d'eau.

Utilisation:

  • Dès l'activation l'appareil fonctionne, il n'y a rien faire.
  • Hors alimentation de la pompe, l'appareil entre périodiquement en veille durant 5 minutes pour économiser l'énergie.
  • Pour accéder aux réglages, éteindre/allumer l'appareil et presser le bouton "wifi" pendant le clignotement rapide. Dans ce mode, la veille périodique est désactivée.
  • Se connecter au réseau wifi "Arrosage..." et à l'adresse [http://192.168.4.1]
  • La mesure d'humidité est affichée en bas de page toutes les 10 secondes.
  • Régler le seuil de détection d'humidité et les cycles d'activation de la pompe. Les changements sont mémorisés après 3 minutes, avant ce délai les changements sont ignorés si l'appareil est éteint. Lorsque la mesure est en dessous du seuil de détection, l'arrosage s'active.
  • Le mode normal avec économie d'énergie est réactivé après 5 minutes sans activité, ou lors du prochain redémarrage. Le wifi est alors inactif.

Signification de la lumière bleue:

  • la lumière s'allume lorsque la pompe est activée
  • clignotement rapide au démarrage: activation possible du mode wifi par action sur le bouton
  • clignotement bref 3 fois : les changements de paramètres sont mémorisés
  • clignotement long 1 fois et bref 2 fois : l'appareil entre en veille pour 5 minutes. Éteindre/allumer pour l'activer avant ce délai

Note: pour les appareils alimentés par USB et sans alimentation interne, l'activation se fait par branchement du câble USB.

Notes et références