Atelier pour Arrosage automatique et autonome : Différence entre versions

De HATLAB
Ligne 127 : Ligne 127 :
 
Une première évaluation  donne une estimation de coût de 60€  
 
Une première évaluation  donne une estimation de coût de 60€  
  
* Pompe  3,98 €  1
+
* Pompe  3,98 €  1
* Capteur humidité capacitif 1,04 € 3
+
*Capteur humidité capacitif 1,04 € 3
 
  *Écran tactile 3,2" 9,89 € 1
 
  *Écran tactile 3,2" 9,89 € 1
 
* Électrovanne 1 voie 1,85 € 3
 
* Électrovanne 1 voie 1,85 € 3

Version du 2 janvier 2022 à 19:38

Une Technique de avatarSylvain dans les catégories Science & Biologie, Sport & Extérieur, Alimentation & Agriculture, Projet de Groupe. Dernière modification le 18/10/2023 par Sgiraud.

Atelier pour Arrosage automatique et autonome mur-vegetal.png

Introduction

Il s'agit de faire un système d'arrosage automatique pour des membres du CLC. Un atelier sera proposé au printemps et les participants pourront partir chez eux avec un petit système qu'il auront fabriqué, pour un coût modéré. 4 exemplaires seront réservés pour le mur végétal du CLC.

Cas d'usage: Le CLC apprend à des jeunes à planter puis à récolter des graines. Problème: lors d'une absence de chez soi, au retour, tout est sec ! De plus il y a un "mur végétal" devant le CLC. De même, au retour, tout est cramé.

Liste des matériaux

Proposition:

  • Il y a un réservoir récupérateur d'eau à proximité
  • Ajouter une petite pompe, un programmateur, éventuellement des capteurs d'humidité
  • des drains (pas de gros débit)
  • 1 Panneau Solaire
  • ...etc...

Liste des outils

Etape n°1 - 1ers choix

Choix notés ce soir:

  • quel type de pompe ? (s'assurer qu'elle peut aller jusqu'au bout du mur)
  • batterie rechargeables ou pas ?
  • arrosage sur ou sous terre
  • circuit électronique simple, ou nano, ou nodemcu (rester dans du "standard")
  • quel panneau solaire? Doit-il pouvoir alimenter le moteur directement, ou faut il passer par des batteries pour avoir assez de puissance?

Il y a même des tutos sur des circuits de recharge utilisant un simple TP4056 connecté au panneau et à la batterie! Est-ce sérieux?

Ci-joint un panneau que j'ai, de 12V , 3,5W, 290mA.

Etape n°2 - Cas du mur Végétal

Le mur a les caractéristiques:

  • gros réservoir de 1000L
  • plusieurs palettes à étages
  • étalées sur 10 mètres

Il faut donc:

  • de la puissance au niveau de la pompe (pompe 12V essuie-glace?),
  • bien distribuer le débit partout,
  • plusieurs mesures d'humidité,
  • le surplus d'eau peut s'écouler entre les étages d'une même palette

Etape n°3 - Cas du kit individuel

Le système avec 2 bouteilles tête-bêche et récupération de l'eau a plusieurs avantages.

  • la pompe est de puissance réduite, remonte l'eau de la bouteille du bas vers cette du haut, en circuit fermé.
  • 1 seule mesure d'humidité

Ce cas ne fait pas partie des objectifs actuels à l'étude. Il est conservé pour un besoin futur.

Etape n°4 - Etude de l'alimentation

Si on privilégie un panneau solaire. Il existe 2 cas:

  • Alimentation uniquement lors de l'ensoleillement. Lorsque l'ensoleillement est faible le système est arrêté. Avantages: pas de batterie ni de recharge, mesures ponctuelles (avec des sondes à fil il faut éviter de faire circuler le courant en permanence car cela oxyde la matériau. Mais l'alimentation solaire doit être suffisante pour actionner la pompe.
  • Alimentation permanente. Nécessite un batterie, d'un type non dangereux et un circuit de contrôle.

Conso estimée:

  • Système simple pur électronique : 130-220mA
  • Microcontroller ESP en mode normal : 70mA
  • Microcontroller ESP en mode "deep sleep" : conso 4mA.
  • Moteur de la pompe : à voir selon le modèle, pompe essuie-glace 12V, ou pompe plus réduite par exemple 6V.

Alimentation Microcontroller:

  • ESP NodeMCU: Maxi 12V, Régulation intégrée par AMS1117 3.3V
  • Nano : Régulation 5V.
  • D1 Mini : Regulation intégrée 6 V Maxi

Etape n°5 - Démo d'un test de lecture d'humidité

La sonde comprend 2 fils de cuivre. Le réglage du seuil se fait par écran tactile, juste pour le test. On note que le moteur 12V consomme déjà + de 400mA une fois lancé.

L'alimentation du moteur s'effectue au travers d'un transistor Darlington : la vitesse est réglable en jouant sur la modulation de largeur d'impulsion MLI (ou PWM en anglais) de la sortie du µc (esp32)

Etape n°6 - Construction d’un module autonome d’alimentation en eau

Une colonne intermédiaire embarquant : • un réservoir de 5L d’eau • 2 capteurs de niveau d’eau, • une electrovanne • un microcontroleur (pilotant l’electrovanne en tenant compte de l’heure et de l’humidité de la terre par une sonde)

Nota : une bouteille plastique cristalline de 5L coûte 0,87€ à Auchan drive le 2021-12-04)

Etape n°7 - Exemple de mur végétal

Ci-contre une photo exemple de réalisation de mur végétal avec alimentation en eau par système de goutte à goutte.

Etape n°8 -

Etape n°9 - Exemple de suspension

Avec du fil à rôti, Faire autant de suspentes que nécessaire en doublant le fil. Un minimum de 4 est fortement recommandé. Pour une bouteille de 8L, chaque brin supportera donc 1kg.

Etape n°10 - Exemple de schéma

Proposition de solution employant une seule pompe et alimentant 3 circuits indépendants avec des niveaux de seuils d'humidités différents.

Une première évaluation donne une estimation de coût de 60€

* Pompe  3,98 €  1
*Capteur humidité capacitif	 1,04 € 	3
*Écran tactile		3,2"	 9,89 € 	1
  • Électrovanne 1 voie 1,85 € 3
  • Puissance pompe TIP120 1,00 € 1
  • Puissance électrovannes BC540,. 2 N2222 0,25 € 3
  • Diode de roue libre 1N4001 0,10 € 3
  • Résistances, capa,.. 1,00 € 1
  • Connectiques 0,20 € 10
  • fil électrique 1,50 € 1
  • Tuyaux eau 3,50 € 1
  • Batterie LIPO- 1100mAh 7,46 € 1
  • Panneau solaire 7,73 € 1
  • µC Esp32 2,50 € 1
  • Circuit de charge 1,32 € 1
  • Pcb spécifique 5,00 € 1

Etape n°11 - Evaluation d'une pompe de lave glace

Évaluation d'une pompe de lave-glace

Alimentation en 12V - courant mesuré : 1,5 à 2A --> soit une puissance estimée ~ 24W

A vide, le débit est de plusieurs litres à la minute (estimé inférieur à 10s pour vider une bouteille de 1,5l). La pompe permet d'expulser un jet d'eau à un mètre.

Des essais complémentaires doivent être menés pour évaluer la hauteur maxi de refoulement qui semble être de plusieurs mètres

Etape n°12 - Tentative de piece 3D pour distribuer l'eau

Cette pièce permettrait de régler le débit sur une branche par rapport aux autres. Le réglage est fixe, ce qui est moins bien qu'un moteur ou une valve électrique.

Notes et références